文|消金界
近日,海爾消費(fèi)金融與火山引擎合作成立了金融大模型聯(lián)合創(chuàng)新實(shí)驗(yàn)室,構(gòu)建消費(fèi)金融垂直大模型。
從通用金融大模型到專項(xiàng)金融大模型,大模型已經(jīng)被視為可以重塑金融業(yè)的“新質(zhì)生產(chǎn)力”。
過(guò)去一年,國(guó)內(nèi)多家銀行開(kāi)始構(gòu)建金融行業(yè)垂直領(lǐng)域的AI大模型,通過(guò)發(fā)展金融大模型,得以充分挖掘內(nèi)部金融數(shù)據(jù)資源的潛力,為自身發(fā)展提供新的動(dòng)能。
頭部消費(fèi)金融公司也緊隨其后入局金融大模型,招聯(lián)金融、馬上消費(fèi)此前已經(jīng)發(fā)布了自己的專項(xiàng)金融大模型應(yīng)用。
金融大模型垂直賽道上,已經(jīng)擠滿了選手。
01、頭部銀行紛紛布局大模型
我們之前就提到過(guò),銀行業(yè)擁有巨量的數(shù)據(jù),豐富的應(yīng)用場(chǎng)景,經(jīng)過(guò)多年的數(shù)字化轉(zhuǎn)型積累,天然適配大模型的發(fā)展。
加之現(xiàn)在,銀行一方面有普遍的“增長(zhǎng)焦慮”,一方面又有“降本增效”的需求,而大模型在信息處理和內(nèi)容加工方面釋放生產(chǎn)力效果明顯,這讓銀行更加有動(dòng)力追求金融大模型。
所以我們看到,在通用大模型之后的行業(yè)大模型方面,銀行業(yè)尤其是大銀行表現(xiàn)得非常積極。
2023年,工商銀行率先在國(guó)內(nèi)建立了千億級(jí)的AI大模型技術(shù)體系。據(jù)工行首席技術(shù)官透露,工商的大模型,優(yōu)先面向金融文本和金融圖像分析理解創(chuàng)作的智力密集型場(chǎng)景,以助手形式,人機(jī)協(xié)同提升業(yè)務(wù)人員工作質(zhì)效。
建設(shè)銀行也非常重視大模型的研發(fā),啟動(dòng)了“方舟計(jì)劃”,推進(jìn)金融大模型建設(shè)和應(yīng)用。建行“方舟計(jì)劃”有三大目標(biāo)——在業(yè)務(wù)場(chǎng)景應(yīng)用落地、促進(jìn)員工工作模式轉(zhuǎn)變、奠定人工智能時(shí)代競(jìng)爭(zhēng)優(yōu)勢(shì)。
在大模型基礎(chǔ)能力建設(shè)方面,建設(shè)銀行大模型已具備信息總結(jié)、信息推斷、信息擴(kuò)展、文本轉(zhuǎn)換、安全與價(jià)值觀、復(fù)雜推理、金融知識(shí)等7項(xiàng)一級(jí)能力?;A(chǔ)應(yīng)用建設(shè)方面,建設(shè)銀行已經(jīng)上線“方舟”助手、“方舟”工具箱、向量知識(shí)庫(kù)等金融大模型基礎(chǔ)應(yīng)用。
郵儲(chǔ)銀行也緊跟金融大模型的發(fā)展,將大模型技術(shù)融合進(jìn)“郵儲(chǔ)大腦”,構(gòu)建新型生成式AI能力,重塑數(shù)字金融服務(wù)模式,在研發(fā)測(cè)試、運(yùn)營(yíng)管理、客戶營(yíng)銷、智能風(fēng)控等領(lǐng)域?qū)崿F(xiàn)應(yīng)用。
2023年年初,農(nóng)業(yè)銀行金融 AI 大模型應(yīng)用 ChatABC,并在內(nèi)部以多輪問(wèn)答助手、工單自動(dòng)化回復(fù)助手等形式面向內(nèi)部員工開(kāi)放試用。
股份行中,2023年,招商銀行啟動(dòng)了大模型生態(tài)建設(shè),開(kāi)展大語(yǔ)音模型建設(shè)和應(yīng)用,搭建大模型體驗(yàn)平臺(tái),在專業(yè)場(chǎng)景自研百億級(jí)參數(shù)大模型,積極探索大模型在零售、批發(fā)、中后臺(tái)的應(yīng)用。
興業(yè)銀行發(fā)布了百億級(jí)大模型 ChatCIB。中信銀行上線了中信大模型平臺(tái),完成千億級(jí)開(kāi)源大模型部署。
北京銀行是城商行發(fā)展金融大模型的代表,發(fā)布了AIB平臺(tái),深度融入生成式人工智能技術(shù),系統(tǒng)構(gòu)建“AI+”金融全圖景。
從部署大模型的銀行分布看,雖然通用大模型和金融大模型的發(fā)展,已經(jīng)是一個(gè)確定性的趨勢(shì),但深度研發(fā)金融大模型的銀行,還是少數(shù)頭部銀行。
02、金融大模型落地場(chǎng)景
銀行投入重金研發(fā)金融大模型,最終目的肯定是為了應(yīng)用——對(duì)外提升客戶的體驗(yàn),對(duì)內(nèi)賦能員工、提質(zhì)增效。
而無(wú)論為金融大模型貼上如何重要的標(biāo)簽,我們觀察金融大模型真實(shí)的發(fā)展水平,還是要看已經(jīng)在銀行那些應(yīng)用場(chǎng)景中實(shí)現(xiàn)落地應(yīng)用。
2023年,工商銀行的大模型主要用于遠(yuǎn)程銀行符合和賦能業(yè)務(wù)運(yùn)營(yíng)。工行大模型技術(shù)在坐席助手場(chǎng)景落地,全年服務(wù)量21.5億筆,接聽(tīng)率和智能分流率同業(yè)領(lǐng)先。工行還上線了首個(gè)基于大模型的網(wǎng)點(diǎn)員工智能助手,提升網(wǎng)點(diǎn)效能,2023年運(yùn)營(yíng)領(lǐng)域智能處理業(yè)務(wù)量3.2億筆,比上年增長(zhǎng)14%。
建設(shè)銀行大模型在業(yè)務(wù)場(chǎng)景應(yīng)用方面,實(shí)現(xiàn)智能客服工單生成、自動(dòng)化生產(chǎn)營(yíng)銷創(chuàng)意內(nèi)容和文案等業(yè)務(wù)的智能化。其中,智能客服工單生成每單平均節(jié)約客服工作時(shí)間15-20秒,可用率達(dá)82% ,一致性達(dá)80%。
郵儲(chǔ)銀行大模型的落地場(chǎng)景也很豐富,測(cè)試孵化了“研發(fā)助手”,輔助需求分析、UI設(shè)計(jì)、代碼生成、系統(tǒng)測(cè)試等研發(fā)全流程,提升端到端研發(fā)效率;上線了柜面“小郵助手”,為柜員提供在線業(yè)務(wù)知識(shí)問(wèn)答,提升業(yè)務(wù)辦理效率;推出情感模型會(huì)話洞察與“靈動(dòng)智庫(kù)”服務(wù)增強(qiáng)企業(yè)微信運(yùn)營(yíng)功能,提升基層精細(xì)化客戶洞察能力;打造智能風(fēng)控“智能審查助手”,輔助法審工作合規(guī)高效。
農(nóng)業(yè)銀行加快推進(jìn)大模型技術(shù)預(yù)研孵化,客服知識(shí)庫(kù)上線答案推薦、知識(shí)庫(kù)輔助搜索等功能。
平安銀行則將大模型技術(shù)用于零售貸款審批、運(yùn)營(yíng)管理數(shù)智化升級(jí)、消保降訴、汽車金融 AI 驗(yàn)車等場(chǎng)景,結(jié)合計(jì)算機(jī)視覺(jué)、多模態(tài)等技術(shù),形成綜合人工智能解決方案。
興業(yè)銀行的金融大模型ChatCIB聚焦財(cái)富、投資、報(bào)告等垂直領(lǐng)域,上線 6 類數(shù)字助手。其中,企金產(chǎn)品助手知識(shí)問(wèn)答準(zhǔn)確率達(dá)90%,研報(bào)摘要助手每年可增效 54 人,代碼生成助手輔助集團(tuán)研發(fā)人員提升研發(fā)效能,客服坐席助手可自動(dòng)擴(kuò)展相似問(wèn)并輔助生成進(jìn)線案例小結(jié)等,提升遠(yuǎn)程銀行營(yíng)銷水平及智能運(yùn)營(yíng)效率。
北京銀行自研“京智大模型”形成了宣傳文案、智能周報(bào)、文章翻譯、工作總結(jié)、會(huì)議紀(jì)要、通知撰寫、代碼生成、代碼注釋等基礎(chǔ)應(yīng)用場(chǎng)景。
從這些銀行的金融大模型落地應(yīng)用場(chǎng)景看,大模型確實(shí)將銀行的數(shù)字化向前推進(jìn)了一步,但是當(dāng)前,銀行金融大模型的應(yīng)用多用于客服、辦公、運(yùn)營(yíng)、營(yíng)銷等領(lǐng)域,還沒(méi)有觸及銀行的核心業(yè)務(wù)。
03、通用金融大模型初現(xiàn)端倪
基礎(chǔ)的通用大模型,訓(xùn)練需要投入大量的數(shù)據(jù),然后就是需要大量的算力,算法難度也大,因此成本極高。所以我們看到,即使是大銀行,發(fā)展金融大模型的模式也是先接入基礎(chǔ)大模型,然后用自有語(yǔ)料訓(xùn)練調(diào)試,建立金融行業(yè)大模型和企業(yè)大模型。
對(duì)銀行來(lái)說(shuō),這確實(shí)是一種更為現(xiàn)實(shí)的方式。
據(jù)了解,工商銀行、交通銀行、北京銀行等多家銀行,與華為合作成立創(chuàng)新實(shí)驗(yàn)室。在大模型方面,銀行與華為的合作,主要圍繞華為云的盤古大模型,建立大模型訓(xùn)推平臺(tái),孵化自主可行的金融行業(yè)大模型,探索大模型在智能營(yíng)銷、智能運(yùn)營(yíng)、智能風(fēng)控、智能辦公等金融全場(chǎng)景的應(yīng)用。
目前看,華為云的盤古大模型被銀行接入最多。華為云稱,盤古大模型在營(yíng)銷、風(fēng)控、客服、投研等多種金融通用場(chǎng)景具備較為完善的能力,支持語(yǔ)言、語(yǔ)音、視覺(jué)、多模態(tài)多種任務(wù),包含金融知識(shí)識(shí)別、金融知識(shí)理解、金融文本生成、金融推理計(jì)算、金融語(yǔ)音表達(dá)、金融圖像識(shí)別、金融視覺(jué)風(fēng)控多項(xiàng)任務(wù)效果。
另一個(gè)值得關(guān)注的金融大模型是馬上消費(fèi)的天鏡大模型。
中國(guó)信息通信研究院人工智能研究中心,聯(lián)合了業(yè)內(nèi)50家單位,編制了金融大模型標(biāo)準(zhǔn),并組織了兩輪可信AI大模型標(biāo)準(zhǔn)符合性驗(yàn)證,參評(píng)單位包括了大模型技術(shù)廠商、互聯(lián)網(wǎng)企業(yè)、人工智能企業(yè)、科研院所、初創(chuàng)企業(yè)等。其中在金融大模型專項(xiàng)上,只有華為、馬上消費(fèi)2家企業(yè)。
華為云的盤古大模型和馬上消費(fèi)的天鏡大模型V1.0參與了可信AI大模型標(biāo)準(zhǔn)符合性驗(yàn)證,完成金融大模型標(biāo)準(zhǔn)符合性驗(yàn)證,是首批通過(guò)金融大模型標(biāo)準(zhǔn)符合性驗(yàn)證的產(chǎn)品。
據(jù)悉驗(yàn)證主要考察目前的金融大模型在語(yǔ)言、語(yǔ)音、視覺(jué)、多模態(tài)任務(wù)等方面的能力支持度,評(píng)估金融大模型在數(shù)據(jù)合規(guī)性、模型可控性、服務(wù)可靠性方面的應(yīng)用成熟度。
以華為云盤古大模型和馬上消費(fèi)天鏡大模型為代表的專項(xiàng)金融大模型,讓更多的中小銀行用上金融大模型成為可能。
大銀行接入基礎(chǔ)大模型然后自己訓(xùn)練,對(duì)于需要考慮投入產(chǎn)出比的中小銀行,可以直接接入通用的金融大模型,然后微調(diào)形成針對(duì)某個(gè)具體領(lǐng)域的任務(wù)大模型,直接賦能具體業(yè)務(wù)。
以往的每次數(shù)字化變革,都很容易形成分化,加大大型銀行和中小銀行之間的差距,而在大模型時(shí)代,借由不同的落地方式,中小銀行也許可以通過(guò)極低的成本,來(lái)縮小甚至拉平與大銀行之間的差距。
從這個(gè)意義上講,金融大模型對(duì)銀行業(yè)的重塑,確實(shí)值得期待。